Chem. Ber. 103, 3114-3121 (1970)

Herbert W. Roesky und Ludwig F. Grimm

Über die Darstellung von Verbindungen mit einem P-N-P-Gerüst¹⁾

Aus dem Anorganisch-Chemischen Institut der Universität Göttingen

(Eingegangen am 15. Mai 1970)

_.

N-Chlordifluorphosphoranyliden-Verbindungen reagieren mit wasserfreier oder deuterierter Ameisensäure zu den Verbindungen $S=PF_2NXPOF_2$, $S=PFCINXPOF_2$, $S=PCl_2NXPOF_2$ (X = H oder D) (1-6). Die angegebenen Strukturen werden aufgrund von Massen-, IR- und NMR-Spektren wahrscheinlich gemacht. *N*-Trifluorphosphoranyliden-Verbindungen reagieren bei -80° in Äther mit Ammoniak zu den Amiden S = PFCIN=PF_2NH_2 (8) und S=PCl_2N=PF_2NH_2 (9). S=PF_2N=PF_2NH_2 (7) entsteht durch Dismutierung von 8. Analysen, ¹H-, ¹⁹F- und ³¹P-NMR-Daten werden mitgeteilt.

The Preparation of Compounds with a P-N-P-Skeleton¹⁾

N-Chlorodifluorophosphoranylidene compounds react with waterfree or deuterated formic acid to form the compounds $S = PF_2NXPOF_2$, $S = PFCl_NXPOF_2$, $S = PCl_2NXPOF_2$ (X = H or D) (1-6). On the basis of mass-, i.r., and n.m.r. spectra the above mentioned structures have been assigned. *N*-Trifluorophosphoranylidene compounds react at -80° in ether with ammonia to give the amides $S = PFCl_N = PF_2NH_2$ (8) and $S = PCl_2N = PF_2NH_2$ (9). $S = PF_2N = PF_2NH_2$ (7) is formed by dismutation of 8. Analysis, ¹H-, ¹⁹F- and ³¹P n.m.r. data are reported.

Monomere Trifluorphosphoranyliden-Verbindungen reagieren mit überschüssigem PF_3Cl_2 unter Fluor-Chlor-Austausch²⁾.

$$S = \frac{F}{F} - N = PF_3 + PF_3Cl_2 - \longrightarrow S = \frac{F}{F} - N - PF_2Cl_2$$

Die gemischten Chlordifluorphosphoranyliden-Derivate schienen uns geeignet für die partielle Hydrolyse, weil dabei Chlorwasserstoff anstelle von HF entsteht. Aus unseren Umsetzungen mit Silicium-Stickstoff-Verbindungen konnten wir voraussetzen, daß die Hydrolyse an der $-N-PX_3$ -Gruppe einsetzt³). Wir haben zum Hydrolysieren anstelle von Wasser wasserfreie Ameisensäure eingesetzt³).

$$\begin{array}{cccc} F & F \\ S - P - N = PCl + HCO_2H & \longrightarrow & S = P - N = P - OH + CO + HCl \\ F & F & F & F \end{array}$$

Phosphorverbindungen, 57. Mitteil. - 56. Mitteil.: H. W. Roesky, Z. Naturforsch., im Druck.

²⁾ H. W. Roesky und L. F. Grimm, Chem. Ber. 102, 2319 (1969).

³⁾ H. W. Roesky und L. F. Grimm, Chem. Ber. 103, 1664 (1970).

Die Reaktionen verliefen vollständig im Sinne der angegebenen Gleichung. Für das Hydrolyseprodukt sind prinzipiell drei isomere Formen denkbar:

$$\begin{array}{ccccccc} F & F & F & H & F & F & F \\ S = P - N = P - OH & S = P - N - P = O & HS - P = N - P = O \\ F & F & F & F & F \\ 1a & 1b & 1c \end{array}$$

Bei der Hydrolyse von $S = PF_2Cl$ und $S = PFCl_2$ hatten wir wahrscheinlich gemacht, daß derartige isomere Formen leicht auftreten können^{4,5)}. Aufgrund von IR-Untersuchungen nahmen wir zunächst an, daß ein Gleichgewicht zwischen **1a** und **1b** vorliegt und daß inter- und/oder intramolekulare Wasserstoffbrückenbindungen vorhanden sind. Wir beobachteten im Bereich der P == O- und P == N-Valenzschwingung zwei starke Absorptionen, die wir zunächst der P == N-Schwingung in **1a** und der P == O-Schwingung in **1b** zuordneten.

Aufgrund von zwei Banden bei ungefähr 3000/cm konnten wir die Form 1c ausschließen, denn in diesem Bereich treten NH- oder OH-Brückenschwingungen⁶⁾ auf, während SH-Valenzschwingungen bei kleineren Wellenzahlen absorbieren. In Hydroxiden mit kovalenter Element-Sauerstoff-Bindung tritt neben der OH-Valenzschwingung cine Deformationsschwingung auf, so daß wir eine HNP- oder HOP-Deformations-

	Verbindung	% Ausb.	Sdp./Torr	νP=0 (cm ⁻¹)	δHNP (cm ⁻¹)	δDNP (cm ⁻¹)	vNH (cm ^{−1})	vND (cm ^{−1})
1	$ \begin{array}{c} F & H & O \\ S = P - N - PF_2 \\ F \end{array} $	90	38°/0.01	1330	1395		≈3000, 2750	
2	$S = \frac{F D O}{F} N - PF_2$	92	345/0.01	1330		1160		≈2220
3	$S = P - N - PF_2$ Cl	90	62°/0.01	1325	1385		≈ 3000, 2720	
4	$\substack{F \\ S = P - N - PF_2 \\ CI} O$	89	71°/0.01	1330		1150		≈2200
5	$S = \begin{array}{c} C1 & H & O \\ P - N - PF_2 \\ C1 \end{array}$	95	110°/0.01	1320	1380		≈3000, 2720	
6	$ \begin{array}{c} Cl & D & O \\ S - P - N - PF_2 \\ Cl \end{array} $	94	116°/0.01	1320				≈2200
				vP≕N (cm ¹)		vasNH2 (cm ^{−−1})	v ₈ NH2 (cm ⁻⁺¹)	δNH2 (cm⁻1)
7	$\begin{array}{c} F & F \\ S = P - N = P - NH_2 \\ F & F \end{array}$	5	26°/0.01	1370		≈3500	≈3300	1600
8	$S = \begin{matrix} F & F \\ P & N = \begin{matrix} F \\ P \\ C I \end{matrix} = \begin{matrix} F \\ F \end{matrix}$	30	62°/0.01	1355		≈3500	≈3300	1600
9	$S = \begin{array}{c} CI & F \\ P - N = P - NH_2 \\ CI & F \end{array}$	45	92°/0.01	1335		≈3500	≈ 3300	1600

Tab. 1. Dargestellte P-N-P-Verbindungen

⁴⁾ H. W. Roesky, Chem. Ber. 100, 950 (1967).

5) H. W. Roesky, Chem. Ber. 100, 1447 (1967).

⁶⁾ H. Siebert, Anwendungen der Schwingungsspektroskopie in der anorganischen Chemie, Springer Verlag, Berlin, Heidelberg, New York 1966.

	SPF ₂	NHPOF ₂ (1)		SPFCI	NDPOF ₂ (4)		SPC1 ₂ 1	NHPOF ₂ (5)		SPC1 ₂ 1	NDPOF ₂ (6)
e II	relative Intens.	Bruchstück	e M	relative Intens.	Bruchstück	<u>e</u>]a	clative Intens.	Bruchstück	<u>m</u> Ic	lative ntens.	Bruchstück
201	100.0	SPF ₂ NHPOF ₂ (Molekül-Ion)	218	37.5	SPFCINDPOF ₂ (Molekül-Ion)	233	66.7	SPCl ₂ NHPOF ₂ (Molekül-Ion)	234	30.8	SPCl ₂ NDPOF ₂ (Molekül-Ion)
199	54.5	SPF ₂ NHPOFOH	202	5.0	SPF ₂ NDPOF ₂	198	100.0	SPCINHPOF ₂	199	100.0	SPCINDPOF ₂
187	17.7	PF_3NPOF_2	183	78.8	SPFNDPOF ₂	166	49.3	PCINHPOF ₂	167	19.3	PCINDPOF ₂
182	8.2	SPFNHPOF ₂	167	5.6	PFCINDPOF	162	9.1	SPNPOF ₂	133	6.4	SPC1 ₂
169	5.1	PF2NHPOF2	151	21.3	PFNDPOF ₂	133	11.4	SPC1 ₂	130	79.5	PNPOF ₂
168	17.1	PF2NPOF2	130	17.5	PNPOF ₂	130	72.0	PNPOF ₂	114	3.2	PNPF ₂
166	13.9	PF2NPOFOH	117	8.1	SPFCI	114	6,1	PNPF ₂	101	18.0	PCl ₂
155	12.7		107	20.0	PF_4	101	15.9	PCl ₂	98	5.1	SPCI
150	11.4	PFNHPOF₂	88	4.4	PF_3	85	28.0	POF_2	85	91.5	POF_2
130	8.9	PNPOF ₂	85	26.2	POF + PFCI	69	23.5	PF_2	69	81.5	PF_2
115	14.5	SPF_2N	82	8.7	SPF	66	9.1	POF	99	20.5	PCI
107	3.8	PF_4	69	18.8	PF_2	63	48.5	SP	63	97.5	SP
101	20.3	SPF_2	99	2.5	POF	50	3.8	PF	50	16.7	PF
85	16.5	POF_2	63	4.4	SP	47	15.2	PO	47	94.0	PND + PO
82	16.0	SPF	50	5.2	PF	46	39.5	PNH	46	66.5	HNH
69	100.0	PF_2	47	10.0	PND + PO	45	4.5	PN	45	12.8	N
50	10.1	ΡF	46	11.2	HNA	36	22.7	HCI	35	35.3	CI
47	69.7	PO	37	46.3	DCI	35	9.1	CI	32	79.5	S
46	50.8	HNJ	36	100	HCI	32	11.4	S	31	26.3	Р
45	2.5	PN	35	20.5	CI	31	4.5	P			
32	11.4	S	32	2.5	S						
31	2.5	ų	31	1.3	Р						

schwingung im Bereich der P=N- oder P=O-Valenzschwingung nicht ausschließen konnten. Wir haben deshalb in diesen Verbindungen das Proton durch Deuterium ersetzt und beobachteten den üblichen Masseneffekt in der Valenzschwingung.

Weiterhin verschiebt sich hauptsächlich eine Bande um etwa 200/cm im Bereich der P=O- und P=N-Valenzschwingung. Aus der Gegenüberstellung der Wellenzahlen in Tab. 1 ersieht man, daß die andere Bande nahezu lagekonstant bleibt. Danach muß man ein Gleichgewicht zwischen 1a und 1b ausschließen. Es kann 1a oder 1b vorliegen. Daß im Bereich der OH- oder NH-Valenzschwingung zwei Banden auftreten, kann man durch die Existenz zweier Gleichgewichtslagen ähnlicher Energie erklären, die das Proton zwischen den O- und/oder N-Atomen einnehmen kann⁶⁾.

Die Massenspektren stehen im Einklang mit der isomeren Form b. Man beobachtet keine Bruchstücke mit SH-Gruppen. Es treten jedoch PNH-Ionen auf, die die Molekülstruktur b in der Gasphase stützen. Tab. 2 zeigt die Zuordnung der Ionen. In allen Fällen beobachteten wir den Molekülpeak.

Zur vollständigen Strukturaufklärung haben wir ¹H-, ¹⁹F- und ³¹P-NMR-Spektren aufgenommen. Das ¹⁹F- und ³¹P-NMR-Spektrum von $S=PF_2NHPOF_2$ (1) ist in Abbild. 1 wiedergegeben. Auffallend klein sind die ³¹P-³¹P-Kopplungskonstanten;

Abbild. 1. Oben: ¹⁹F-NMR-Spektrum von SPF₂NHPOF₂ (1) bei 30° (CCl₃F äußerer Standard), unten: ³¹P-NMR-Spektrum von 1 bei 30° (85proz. H₃PO₄ äußerer Standard)

dies steht in guter Übereinstimmung mit dem Strukturvorschlag 1b. Im Verhältnis zu P-N=P-Verbindungen mit einer N=P-Doppelbindung sind die Kopplungskonstanten um eine Zehnerpotenz kleiner (s. Tab. 3).

Verbindung	J _{ሥNዞ} (Hz)	Verbindung	J _{PNP} (Hz)
$S = PF_2N = PF_3^{(7)}$	136	$S = PCl_2N = PF_2N(C_2H_5)$	47.5
$S = PFCIN = PF_3^{(7)}$	105	$S = PCl_2N = PF_2NH_2$	57
$S = PF_2N = PF_2C_6H_5^{(1)}$	74	$S = PFCIN = PF_2NH_2$	89
$S = PFC(N = PF_2C_6H_5^{1})$	47	$S = PF_2N = PF_2NH_2$	120
$S = PF_2N = PFN(CH_3)_2N(C_2H_3)_2$	85	S=PF2-NH-POF2	11
$S = PF_2N = PF_2NCS$	125	$S - PFCI - ND - POF_{2}$	8
$S = PF_2N = PF_2N = C = NSi(CH_3)_3$	124	$S = PCl_2 - NH - POF_2$	Ō
$S = PF_2N = PF_2NHSi(CH_3)_3$	116		

Tab. 3. ³¹P-³¹P-Kopplungskonstanten

Aus dieser Gegenüberstellung kann man entnehmen, daß die Verbindungen im flüssigen Zustand bei Raumtemperatur ebenfalls in der isomeren Form b vorliegen.

Für den Aufbau kettenförmiger Phosphor-Stickstoff-Verbindungen eignen sich am besten Amide, die mit PCl₅ oder PF₃Cl₂ umgesetzt werden. Mit Ammoniak reagieren Trifluorphosphoranyliden-Verbindungen unter Ersatz eines Fluoratoms, z. B.

$$\begin{array}{ccc} Cl & F & Cl & F \\ S = P - N = PF + 2NH_3 & \longrightarrow & S = P - N = P - NH_2 + NH_4F \\ Cl & F & Cl & F \end{array}$$

Die Umsetzungen werden bei -80° in Diäthyläther ausgeführt. Das Molverhältnis wird genau 1:2 gewählt, um die Bildung höhersubstituierter Produkte zu vermeiden. Während die Verbindungen 8 und 9 entsprechend der angegebenen Gleichung entstehen, konnte 7 nur durch Dismutierung erhalten werden.

$$\begin{array}{cccc} F & F & F & F \\ 2 & S = P - N = P - NH_2 & \longrightarrow & S = P - N = P - NH_2 + 9 \\ Cl & F & F & F \\ 8 & & 7 \end{array}$$

S=PF₂NPF₃ reagiert mit Ammoniak unter Spaltung der Phosphor-Stickstoff-Bindung. Die chlorierten Derivate sind im Ölpumpenvakuum nur unter teilweiser Zersetzung destillierbar. Die ³¹P-³¹P-Kopplungskonstanten dieser Verbindungen zeigen eine lineare Abhängigkeit vom Fluorierungsgrad (Abbild. 2).

Abbild. 2. Abhängigkeit der ³¹P-³¹P-Kopplungskonstanten vom Fluorierungsgrad ⁷⁾ E. Fluck und G. Heckmann, Z. Naturforsch. **24b**, 953 (1969). Herrn Dipl.-Phys. D. Böhler danken wir für die Aufnahme der Massenspektren und Herrn Dr. E. Niecke für die Messung von ¹H-, ¹⁹F- und ³¹P-NMR-Spektren. Herr Professor Dr. H. Hoffmann von den Farbenfabriken Bayer stellte uns in dankenswerter Weise einige Ausgangsverbindungen zur Verfügung. Dem Direktor des Anorganisch-Chemischen Instituts, Herrn Professor Dr. O. Glemser, danken wir für seine großzügige Förderung. Dem Herrn Bundesminister für wissenschaftliche Forschung, der Deutschen Forschungsgemeinschaft, dem Fonds der Chemischen Industrie und der Stiftung Volkswagenwerk sind wir für ihre Unterstützung zu Dank verpflichtet.

Beschreibung der Versuche

Alle Versuche wurden unter Luftausschluß in einer Stickstoffatmosphäre durchgeführt. Der verwendete Stickstoff wurde durch einen Trockenturm mit P_4O_{10} geleitet. Die verwendeten Glas- bzw. Quarzgeräte wurden heiß zusammengesetzt.

Die ¹⁹F-NMR- und ¹H-NMR-Spektren wurden mit dem Gerät Varian A 56/60, die ³¹P-NMR-Spektren mit dem Bruker HX-Gerät, die IR-Spektren mit dem Spektrophotometer Infracord 137 von Perkin-Elmer und die Massenspektren mit einem UF CH 4 Atlas Massenspektrometer aufgenommen. Als äußerer Standard diente (CH₃)₄Si für die ¹H-NMR-Spektren, CFCl₃ für die ¹⁹F-NMR-Spektren und 85 proz. Phosphorsäure für die ³¹P-NMR-Spektren.

Die N-Trihalogenphosphoranyliden-thiophosphoryldihalogenid-amide, SPF₂NPF₃, SPF₂NPF₂Cl, SPFClNPF₃, SPFClNPF₂Cl, SPCl₂NPF₃ und SPCl₂NPF₂Cl, wurden nach Literaturangaben ²⁾ dargestellt.

Allgemeine Arbeitsvorschrift zur Darstellung der Verbindungen 1-6: In einem 100-ccm-Einhalskolben werden zu 0.1 Mol N-Chlordifluorphosphoranyliden-thiophosphoryldihalogenidamid unter Rühren langsam 0.1 Mol wasserfreie Ameisensäure (4.6 g) bzw. 0.1 Mol Dideuteroameisensäure (4.8 g) getropft, wobei die Reaktionstemp. 30° nicht übersteigen soll. Nach beendeter HCl- und CO-Entwicklung werden die Verbindungen i. Ölpumpenvak. destilliert. Ausbb. und Kenndaten s. Tab. 1.

Difluorphosphoryl-difluorthiophosphoryl-amid (1): Aus SPF₂NPF₂Cl und HCO₂H.

¹⁹F-NMR: SPF₂-Teil: $\delta_{\rm F}$ = +40.1 ppm ($J_{\rm AX} + J_{\rm BX}$ = 1121.4 Hz), POF₂-Teil: $\delta_{\rm F}$ = +71.6 ppm ($J_{\rm F-F}$ = 4.7 Hz).

¹H-NMR: $\delta_{\rm H} = -9.0$ ppm.

³¹P-NMR: SPF₂-Teil: $\delta_P = -44.6 \text{ ppm}$; POF₂-Teil: $\delta_P = +17.6 \text{ ppm}$ (*J*_{P-P} = 11 Hz). IR: $\approx 3000 \text{ sst}$, $\approx 2750 \text{ st}$, 1395 sst, 1330 sst, 1020 sst, 965 sst, 905 sst, 840 st, 820 st, 715 st, 660 st, 530 sst, 485 st, 450 sst, 410/cm st.

Deutero-difluorphosphoryl-difluorthiophosphoryl-amid (2): Aus SPF2NPF2Cl und DCO2D.

DF₄NOP₂S (202.0) Ber. D 0.99 F 37.61 N 6.93 P 30.68 S 15.87

Gef. D 1.0 F 37.1 N 6.9 P 30.7 S 16.0

¹⁹F-NMR: SPF₂-Teil: $\delta_F = +38.7$ ppm ($J_{AX} + J_{BX} = 1110.4$ Hz), POF₂-Teil: $\delta_F = +71.3$ ppm ($J_{F-F} = 4.7$ Hz).

 31 P-NMR: SPF₂-Teil: $\delta_{P} = -45.3$ ppm; POF₂-Teil: $\delta_{P} = +20.7$ ppm ($J_{P-P} = 11.5$ Hz). IR: ≈ 3000 s, ≈ 2220 sst, ≈ 2020 st, 1330 sst, 1160 sst, 950 sst, 905 sst, 855 sst, 830 st, 810 st, 785 m, 707 sst, 650 st, 530 sst, 450 sst, 407/cm sst.

Chemische Berichte Jahrg. 103

Diffuorphosphoryl-chlorfluorthiophosphoryl-amid (3): Aus SPFClNPF2Cl und HCO2H.

HCIF₃NOP₂S (217.5) Ber. Cl 16.30 N 6.44 P 28.50 S 14.74 Gef. Cl 16.9 N 6.4 P 28.3 S 14.9

¹⁹F-NMR: SPFCI-Teil: $\delta_F = +9.3$ ppm; POF₂-Teil: $\delta_F = +69.8$ ppm.

¹H-NMR: $\delta_{\rm H} = -9.1$ ppm.

IR: \approx 3000 sst, 2720 st, 1385 sst, 1325 sst, 1010 sst, 960 sst, 900 sst, 830 st, 810 sst, 740 sst, 695 sst, 545 st, 505 sst, 465 st, 425/cm st.

Deutero-difluorphosphoryl-chlorfluorthiophosphoryl-amid (4): Aus $SPFCINPF_2CI$ und DCO_2D .

DClF₃NOP₂S (218.5) Ber. D 0.81 Cl 16.23 F 26.08 N 6.41 P 28.37 S 14.68 Gef. D 0.9 Cl 16.2 F 26.2 N 6.4 P 28.0 S 14.7

¹⁹F-NMR: SPFCl-Teil: $\delta_F = +10.4$ ppm; POF₂-Teil: $\delta_F = +70.0$ ppm.

³¹P-NMR: SPFCI-Teil: $\delta_P = -48.4$ ppm; POF₂-Teil: $\delta_P = +18.0$ ppm (J_{P-P} = 8 Hz).

IR : ≈ 3000 s, ≈ 2200 sst, ≈ 2000 m, 1330 sst, 1150 sst, 955 sst, 915 sst, 855 st, 825 m, 800 st, 775 s, 730 sst, 685 sst, 550 sst, 510-495 sst, 422/cm st.

Difluorphosphoryl-dichlorthiophosphoryl-amid (5): Aus SPCl₂NPF₂Cl und HCO₂H.

HCl₂F₂NOP₂S (233.9) Ber. N 5.99 P 26.49 S 13.70 Gef. N 6.0 P 26.1 S 14.2 ¹⁹F-NMR: $\delta_F = +68.4$ ppm ($J_{AX} + J_{BX} = 1038$ Hz).

¹H-NMR: $\delta_{\rm H} = -9.4$ ppm.

³¹P-NMR: SPCl₂-Teil: $\delta_P = -32.7$ ppm; POF₂-Teil: $\delta_P = +18.6$ ppm.

 $IR : \approx 3000 \text{ sst}, \approx 2720 \text{ st}, 1380 \text{ sst}, 1320 \text{ sst}, 1020 \text{ sst}, 970 \text{ sst}, 945 \text{ sst}, 805 \text{ sst}, 725 \text{ st}, 705 \text{ st}, 540 \text{ sst}, 485/\text{cm} \text{ sst}.$

Deutero-difluorphosphoryl-dichlorthiophosphoryl-amid (6): Aus $SPCl_2NPF_2Cl$ und DCO_2D .

DCl₂F₂NOP₂S (234.9) Ber. D 0.85 Cl 30.18 F 16.17 N 5.96 P 26.38 S 13.65

Gef. D 0.9 Cl 29.1 F 16.0 N 5.9 P 25.9 S 13.8

¹⁹F-NMR: $\delta_{\rm F}$ = +67.8 ppm ($J_{\rm AX}$ + $J_{\rm BX}$ = 1037.6 Hz).

³¹P-NMR: SPCl₂-Teil: $\delta_P = -33.8$ ppm; POF₂-Teil: $\delta_P = +19.1$ ppm.

IR : $\approx 2200 \text{ sst}$, 1320 sst, 1250 sst, 1110 sst, 1040 sst, 955 sst, 900 sst, 800 st, 735 sst, 686 sst, 550 sst, 475/cm sst.

Arbeitsvorschrift zur Darstellung der Verbindungen 8 und 9: In einen 2-l-Dreihalskolben werden 1.8 l Diäthyläther gegeben. Der Kolben wird in ein Thermosgefäß gestellt und mit Methanol/Trockeneis auf -80° heruntergekühlt. Dann gibt man unter Rühren 0.5 Mol $SPCl_2NPF_3$ bzw. $SPFClNPF_3$ zu und kondensiert unter schnellem Rühren 1 Mol NH_3 ein. Anschließend wird das Kühlgefäß weggenommen. Nachdem der Reaktionskolben Raumtemp. angenommen hat, wird das entstandene NH₄F mit einer Filtrationsanlage unter N₂-Atmosphäre abfiltriert und anschließend der Äther i. Ölpumpenvak. abgesaugt. Das so erhaltene Rohprodukt wird anschließend destilliert. Ausbb. und Kenndaten s. Tab. 1.

Arbeitsvorschrift zur Darstellung von 7: Das bei der Darstellung von 8 erhaltene Rohprodukt wird bei 0.01 Torr über eine 20 cm lange Füllkörperkolonne destilliert. Die bei 26° erhaltene Fraktion wurde als SPF₂NPF₂NH₂ (7) charakterisiert. Bei weiterer fraktionierter Destillation erhält man dann 8. 9 läßt sich dabei ohne Zersetzung nicht isolieren.

N-Aminodifluorphosphoranyliden-thiophosphoryldifluorid-amid (7): Aus 8 durch Dismutierung.

 $H_2F_4N_2P_2S$ (200.0) Ber. H 1.01 F 37.98 N 14.00 P 30.98 S 16.03 Gef. H 1.0 F 37.8 N 14.1 P 30.2 S 15.9 ¹⁹F-NMR: SPF₂-Teil: $\delta_F = +35.8$ ppm; PF₂NH₂-Teil: $\delta_F = +67.4$ ppm.

³¹P-NMR: SPF₂-Teil: $\delta_P = -47.9$ ppm; PF₂NH₂-Teil: $\delta_P = +2.3$ ppm(J_{P-P} = 120 Hz). IR: ≈ 3500 sst, ≈ 3300 sst, 1600 sst, 1370 sst, 1050 sst, 940 sst, 885 sst, 780 sst, 675 st, 620 m, 475 st, 427/cm st.

N-Aminodifluorphosphoranyliden-thiophosphorylchloridfluorid-amid (8): Aus SPFClNPF₃ und NH₃.

¹⁹F-NMR: SPFCl-Teil: $\delta_F = +5.3$ ppm; PF₂NH₂-Teil: $\delta_F = +68.9$ ppm.

¹H-NMR: $\delta_{\rm H} = -5.1$ ppm.

³¹P-NMR: SPFCI-Teil: $\delta_P = -52.0 \text{ ppm}$; PF₂NH₂-Teil: $\delta_P = -3.5 \text{ ppm}$ (*J*_{P-P} = 89 Hz).

IR: $\approx 3500 \text{ sst}$, $\approx 3300 \text{ sst}$, 1600 sst, 1355 sst, 1045 sst, 940 sst, 870 sst, 765 sst, 650 sst, 550 sst, 485 sst, 465/cm sst.

N-Aminodifluorphosphoranyliden-thiophosphoryldichlorid-amid (9): Aus $SPCl_2NPF_3$ und NH_3 .

 $H_2Cl_2F_2N_2P_2S$ (232.9) Ber. H 0.86 Cl 30.44 F 16.31 N 12.03 P 26.60 S 13.76 Gef. H 0.9 Cl 30.5 F 16.1 N 12.0 P 26.2 S 13.6

¹⁹F-NMR: $\delta_{\rm F} = +67.9$ ppm.

¹H-NMR: $\delta_{H} = -5.2$ ppm.

³¹P-NMR: SPCl₂-Teil: $\delta_P = -38.3 \text{ ppm}$; PF₂NH₂-Teil: $\delta_P = +5.9 \text{ ppm} (J_{P-P} = 57 \text{ Hz})$. IR: $\approx 3500 \text{ sst}$, $\approx 3300 \text{ sst}$, 1600 sst, 1335 sst, 1045 sst, 1015 sst, 940 sst, 750 sst, 660 sst,

535 sst, 495 sst, 445/cm sst.

[173/70]